什么是Spark SQL
Spark SQL是Spark用来处理结构化数据
的一个模块,它提供了2个编程抽象:DataFrame
和DataSet
,并且作为分布式SQL查询引擎的作用。
Spark SQL的特点
- 易整合
- 统一的数据访问方式
- 兼容Hive
- 标准的数据连接
什么是DataFrame
与RDD类似,DataFrame也是一个分布式数据容器
。然而DataFrame更像传统数据库的二维表格
,除了数据以外,还记录数据的结构信息
,即schema
。同时,与Hive类似,DataFrame也支持嵌套数据类型
(struct、array和map)。DataFrame
是为数据提供
了Schema的视图
。可以把它当做数据库中的一张表
来对待,DataFrame也是懒执行
的。性能上比RDD要高
,主要原因:
优化的执行计划:查询计划通过Spark catalyst optimiser进行优化
。
什么是DataSet
- 是
Dataframe API的一个扩展
,是Spark最新的数据抽象。 - 用户友好的API风格,既具有类型安全检查也具有Dataframe的
查询优化
特性。 - Dataset支持编解码器,当需要访问非堆上的数据时可以避免反序列化整个对象,提高了效率。
样例类
被用来在Dataset中定义数据的结构信息,样例类中每个属性的名称直接映射到DataSet中的字段名称
。- Dataframe是Dataset的特列,DataFrame=Dataset[Row] ,所以可以通过as方法将Dataframe转换为Dataset。Row是一个类型,跟Car、Person这些的类型一样,所有的表结构信息我都用Row来表示。
DataSet是强类型的
。比如可以有Dataset[Car],Dataset[Person].- DataFrame只是知道字段,但是不知道字段的类型,所以在执行这些操作的时候是没办法在编译的时候检查是否类型失败的,比如你可以对一个String进行减法操作,在执行的时候才报错,
而DataSet不仅仅知道字段
,而且知道字段类型
,所以有更严格的错误检查。就跟JSON对象和类对象之间的类比。
版权声明:《 Spark SQL概述 》为明妃原创文章,转载请注明出处!
最后编辑:2020-2-19 14:02:58